- Justification: recall the solution of y' = ay is $y = Ce^{ax}$.
 - O Implies that the solution of $\vec{x}' = A\vec{x}$ is $\vec{x} = e^{At}\vec{c}$.
 - Furthermore, recall that the y(0) = C in the solution of $y = Ce^{ax}$ to y' = ay.
 - In the solution of $\vec{x} = e^{At} \vec{c}$ to $\vec{x}' = A\vec{x}$, $\vec{c} = \vec{x}(0)$
- Powers of matrices:

$$\circ$$
 $A^0 = I$ I denotes the identity matrix of the same dimensions

$$\circ$$
 $A^1 = A$

$$\circ A^n = A^{n-1}A \qquad \text{(recursive formula)}$$

- Matrix Exponential (power series definition):
 - Let A be a square matrix (either real or complex)

$$\circ e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = I + A + \frac{A^{2}}{2} + \frac{A^{3}}{6} \dots$$

- Note that $A^0 = I$ I denotes the identity matrix of the same dimensions
- O Compare to power series of $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$...

$$\circ \quad e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!} = I + At + \frac{A^2 t^2}{2} + \frac{A^3 t^3}{6} \dots$$

o Caution:
$$e^{A+B} \neq e^A e^B$$

- $e^{At} = \Psi \cdot \Psi(0)^{-1}$
 - ο Ψ is any fundamental matrix of the system $\vec{x}' = A\vec{x}$